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Survival probabilities in time-dependent random walks
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We analyze the dynamics of random walks in which the jumping probabilities are petim@iciependent
functions. In particular, we determine the survival probability of biased walkers who are drifted towards an
absorbing boundary. The typical lifetime of the walkers is found to decrease with an increment in the oscilla-
tion amplitude of the jumping probabilities. We discuss the applicability of the results in the context of
complex adaptive systems.
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Random walk is one of the most ubiquitous concepts obinary oscillations isT=2). It was found[13] that the char-
statistical physics. In fact, it finds applications in virtually acteristic lifetime of the walkers; depends on the amplitude
every area of physicésee e.g., Refd.1-6], and references A, in a nontrivial fashion. In particularr; was shown to
therein. Random walks in the presence of absorbing trapglecrease monotonically with the incrementfofWhile this
are much studied in recent years as models for absorbingnalysis provides a useful insight into the behavior of such
state phase transitiolig,8], polymer adsorption9], granular ~ time-dependent random walks, it is of one’s interest to ex-
segregatiorj10], and the spreading of an epidenficl]. plore the general case, of time-dependent jumping probabili-

One of the main characteristics of a random walk in theties with T+ 2. This is the main goal of the present work.
presence of an absorbing boundary is the survival probability !N @ddition to the intrinsic interest in such time-dependent
S(to) of the walkers, the probability that a walker has not'andom walks, our work may find direct applications in
reached the absorption point befdge In the present work Many complex physical, biological, and economical systems.
we explore the properties of the survival probability of ran-IN fact, the main motivation for the introduction of time-
dom walkers who experience a net drift towards an absorpdependent random walks in R¢1.3] was its applicability in
tion point, and whose jumping probabilities are peridtitice the flourl_shlng field of com.ple>'< adaptive systems. In the
dependentiunctions, with a periodT. The probability of ~Well-studied model of the minority gam@1G) [14], and its

stepping to the right at timeis given by evolutionary versiofEMG) [15] (see alsqd16-28), it was
found that the winning probabilities of the agents display a
p(t) = 5 +F(1), (1)  periodic behavior in time. This implies that the survival

probabilities of the agents are well-described by a model of a
where F(t) is a periodic function with a period periodic time-dependent random walk with an absorbing
T[-1/2<F(t)<1/2]. The mean ofF (over one perioflis  boundary[13]. The analytical model presented in RgE3]
given by (with T=2) provides an elegant explanation for the intriguing
phase-transition observed in the EMR5] (from self-
segregation to clustering, as the prize-to-fine ratio drops be-
low some critical valug However, numerical studies of the
EMG [27] have indicated that the period of the oscillations
where,>0. We shall also consider cases in which the net(in the winning probabilities of the agentdepends on the
drift is caused by a smaller step-size to the righway from  specific parameters of the system. Extending the analysis of
the absorption boundaras compared to the step-size to the Ref. [13] to the general case of time-dependent jumping
left. probabilities withT # 2 is therefore highly motivated.

In the unbiased cas@n which case there is no net dpift We consider a time dependent random walker who is
the survival probability is well known to scale as an inversedrifted towards an absorption boundary, locatedatwhere
power-law:S(t) = t™1/2. When the walkers are drifted towards d>0). The drift towards the absorption point may be attrib-
the absorbing point, the survival probability falls exponen-uted to two distinct reasong) A smaller(averagg probabil-
tially at asymptotically late-timesS(t) =t 3%exp(-t/7), ity to take a step to the rightaway from the absorption
where the characteristic lifetime, depends on the drift ve- PoINY. Thatis,(p(t))=1/2~¢,, with €,>0, and(ii) a smaller
locity (see e.g., Refl12]). step sizer to the right, O<r <1 (where the step size to the

The problem of random walks with an absorption bound-left is scaled to 1 This kind of drift is characterized by the
ary has recently been extended to include a situation irparametererzll(lﬂ)—%. Below we explore the time-
which the jumping probabilities of the walkers atime-  dependence of the survival probabili§t), for a general
dependen{13]. The solution presented ifi3] accounts for periodic functionp(t).
the binary (alternating case, namelyp(t):%—ep+(—1)‘A. In the time-independent case, it has been established that
HereA is the oscillations amplitude, angl> 0 represents a the probabilityB(t) for a random walker to be located on the
net drift towards the absorbing bounddtlie period of such right-hand side at time(in cases where there ii® absorbing

:
(Fy=(1MX F(i)=-e, ()
i=1
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boundary is given by B(t) <t Y%exd-t/rg], with =7 1 — 4A2

(see, e.g., Ref12]). Motivated by the equality;z=1 in the (T=2) = Aere) (8)
time independent case, we will find the asymptotic form of P

75 in the general case of time-dependent jumping probabiliThis agrees with Eq(6) in the limit ¢, <1 (or, equiva-
ties. We will establish the relationg(T=2) = 7(T=2) ana- |ently, 7;>1). One therefore findsy(T=2) = 75(T=2) in the
lytically, and demonstrate numerically thgi(T # 2) = 7(T 7> 1 limit.

#2). The generalization of the above analysis for an arbitrary
We first consider the case in which the periédf the  period T is straightforward. IfT=m/n is a rational number,
oscillations is a natural number. Lef(t) be the number of thenF(t) could be replaced by an equivalent function with a

right steps taken by the walker out béteps. The walker is period m, which is a natural number. If is an irrational,

located at the right-hand side(t) > 0] if w> w., where then the all range of values &0<t<T) is sampledover
many periods of the oscillatiopsin this case, one should
t—d 1
0= _ (_ . €r>, 3) replace Eqs(2) and(4) by
1+r 2 1T
in thet>d, T limit. Note thatw, is purely a geometric quan- (F)= T’fo Fdt=-¢ ©)

tity, and thus does not depend pr{accordingly, it does not
depend o, nor one,). and

At any given step, the probability to take a step to the
right, p(t) is an independent random variate. Hensé) (the a1 T
total number of right stepss the sum oft independent ran- (F9)= _J'
dom variates. Thus, following the central limit theorem, the
distribution of w(t) approaches a normal distribution whien In order to confirm the analytical predictiofiand most
is large(the mean and the variance of this distribution is theimportantly, the relationr{(T # 2) = 75(T # 2)], we perform
sum of means and varianceswf Fort>T the distribution  numerical simulations ofdiscret¢ random walks. As we
of w can be very well approximated by a normal distribution have proved analytically that our approximation holds true in
with an average ofu,(t)= t(2 ep) and a varlance02 the binary case withT=2, we shall compare the survival

F2(t)dt. (10)
0

-(t/T)EI L1 pi(1-p) =t(L-4&F?)/4, where probabilitiesS(t) in the T=2 andT # 2 cases. By finding the
relation betweerr(T # 2) and 7(T=2), and showing that it
T is similar to the analytic relation betweefy(T+#2) and
(F%) = (1M X F¥i). (4)  75(T=2), we shall establish the resul{=75 in the generic
=1 case(with T#2).

We consider numerically two different periodic behaviors
' for the jumping probabilities. In the first casg(t) is given
by an harmonic function, while in the second case it is given
by a square function. In the harmonic cag€) is of the

1 s (X—,u)z] 1 (™ f
Blt)=——=| exp-—5— |dx=— e dx orm
® \2ma? o 202

Hence B(t) can be approximated by this normal distribution
with the conditionw(t) > w(t):

Nt i
— 2
= %erfc(\f't/rB), (5) p(t) = % -6~ A cos( T ) T>1. (11
where (We emphasize thdtis adiscretevariable) In this case one
finds[29] (F)=-¢,, and
20t 1-4F? ©
T = = y . _
° _/J“)Z 2(6p+ er)z < 2> - EF2)+A21 T=2 (12)
e+ (A% T#2.

and erfc is the complementary error function. The comple—
mentary error function can be approximated as (etfcrg) This implies that foIT # 2, 75 is independenof the perlodT
~ e/ \7t/ 75 at asymptotically large times. One therefore of the oscillations. Moreover, we find thag(T#2,A/12)

finds =1(T=2,A).
Figure 1 depict¢(S=10"°), the step number in which the
B(t) o« t12g7V'78, (7)  survival probability has fallen t8=107°, as a function of the
oscillation periodT (and for three different values of the
where 7z is given by Eq.(6). oscillation amplitudeA). As predicted by Eq(12), the sur-

The model of binary time-dependent jumping probabili- vival probabilities are almost independent of the periqd
ties[F(t)=—¢,+A(-1)"] was solvedexactlyin Ref.[13], the  except in the unique case of binary oscillations with2.
expression forr is given by Eq(16) of [13]. Expanding this Moreover,S(t; T=2) <S(t; T+ 2), in agreement with Eq$6)
expression for smak, ande,, one finds and(12). In addition, the numerical simulations indicate that
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FIG. 1. The step number for which the survival probability has
fallen to S=1075, as a function of the oscillation periof and for
three different values oA. The jumping probabilitiep(t) are char-
acterized by harmonic oscillations, and are given by @d). We
useN=10° walkers, €,=0.1,r=1, andd=2. All quantities are di-
mensionlessS(t) is found to be independent of the oscillation pe-
riod T, except in the unique case of binary oscillations \ilith2 [in
which caseS(t) is smaller, in agreement with the analytical predic-
tion.] In addition, S(t) decreases monotonically with the increment
of the oscillations amplitudé.

the survival probability decreases monotonically with an in-

crement in the oscillation amplitud in agreement with the
analytical prediction Eq(6).
In Fig. 2 we confirm the relatior§(t, T#2,A)=t, T
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FIG. 3. The step number for which the survival probability has
fallen to S=107%, as a function of the oscillation peridH and for
three different values of. The jumping probability is given by a
square wave of the fornp(t):%—ep+Ax(t), where x(t)=+1 for
2nT<t<(2n+1)T, andx(t)=-1 otherwise, wher@ is an integer.
We useN=10 walkers, ,=0.1,r=0.9, andd=2. We find that in
this case S(t) is independent of the oscillation peridd in agree-
ment with the analytical results.

thatt(S=10°) for T=2 agrees with the corresponding value
in the T#2 case, provided one uses the transformation
—2A.

We further check the validity of the analytical results for
cases in which the jumping probabilities are given by a
square wave of amplitudd and a mean valuéF)=-¢,

=2,2A) in the harmonic case. By doing so we confirm thatnamely p(t):%—ep+Ax(t), where x(t)=+1 for 2nT<t

7(T#2,AIN2)=7(T=2,A), and thus thatry(T# 2) = 75(T
#2). The figure displays the step numb#6=107°) for
which the survival probabilities have fallen to£0lt is clear
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FIG. 2. The step number for whick= 1076, as a function of the
oscillations amplitudé\, and for two different values of the period
T. The jumping probabilities(t) are characterized by harmonic
oscillations, and are given by E@ll). The results confirm the
analytical prediction according to whictS(t, T=2,A)=St,T
#2,V2A). The parameters used are the same as in Fig. 1.

<(2n+1)T, andx(t)=—1 otherwise, whera is some integer.
In this case one findéFZ):e;+A2 for any value ofT. This
implies that7g(T) should beindependenbf the periodT of
the oscillations. Figure 3 depicté§S=107°), the step number
for which the survival probability has fallen ®=107°, as a
function of the periodl. We display results for three differ-
ent values of the oscillation amplitude The numerical re-
sults confirm the finding according to whi@it; T) is inde-
pendent of the value of, confirming the relationrs= 5.
Furthermore, the survival probability(t; T) decreases with
increasing amplitudé\,, in agreement with Eq6).

In summary, in this paper we have studied the survival
probabilities of biased(drifted) random walkers, whose
jumping probabilities ardime-dependentThis is an exten-
sion of the binary casevith T=2), studied in Ref[13]. The
long-time asymptotic survival probability is dominated by an
exponential fallS(t)«exd-t/7,]. We have found a simple
approximation forrs [see Eq(6)], which solely depends on
the first and the second moments of the oscillati@fr$ and
(F?)), and on the step-size drift parameter

Our analytical results imply that the characteristic lifetime
of the walkersr, decreasewith increasing(F?). The larger
are the temporal-oscillations in the jumping probabilities
p(t), the smaller is the survival probability. This result gen-
eralizes the one derived in R¢1L.3] for the binary caséwith
T=2).
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The qualitative nature of the anticorrelation between thevarious parameters of the modguch as the price-to-fine
survival probabilityS(t) and the oscillation amplitudé=2)  ratio). In [13] a toy-model of time-dependent jumping prob-
(in the biased cages rather simple. It is a direct conse- abilities with a period off=2 was used to reveal the physics
quence of the positive correlation betweey(t) (the disper-  behind the dynamical phase-transition. In the present work,
sion in the number of right-steps taken out of a totalt of we have shown that the anticorrelation between the charac-
stepg and S(t). In the presence of a net drift towards the teristic lifetime 7, and the oscillations amplitudé=2) is a
absorption boundaryy,, (the average value ab) is smaller  generic featureindependenbf the periodT of the oscilla-
than w.. A large o,,(t) is therefore required in order to sur- {jgns. Thus, our analysigor generic values oT) lends sup-

vive, that is, in order to have > w. at asymptotically late ot for the general applicability of the conclusions presented
times[30]. in [13].

Finally, the present analysis provides a direct explanation
for the underlying mechanism responsible for the intriguing The research of S.H. was supported by the G.I.F. Founda-
phase-transition observed in the evolutionary minority gameion. The research of E.N. was supported by the Horowitz
[25,15. In this model, the winning probabilities of the agents Foundation, and through the generosity of the Dan David
p(t) where shown to display temporal oscillatiofy]. The  Prize Scholarship 2003. We would also like to thank
amplitude and period of these oscillations depend on th&onatan Oren.
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