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We analyze the dynamics of random walks in which the jumping probabilities are periodictime-dependent
functions. In particular, we determine the survival probability of biased walkers who are drifted towards an
absorbing boundary. The typical lifetime of the walkers is found to decrease with an increment in the oscilla-
tion amplitude of the jumping probabilities. We discuss the applicability of the results in the context of
complex adaptive systems.
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Random walk is one of the most ubiquitous concepts of
statistical physics. In fact, it finds applications in virtually
every area of physics(see e.g., Refs.[1–6], and references
therein). Random walks in the presence of absorbing traps
are much studied in recent years as models for absorbing-
state phase transitions[7,8], polymer adsorption[9], granular
segregation[10], and the spreading of an epidemic[11].

One of the main characteristics of a random walk in the
presence of an absorbing boundary is the survival probability
Sst0d of the walkers, the probability that a walker has not
reached the absorption point beforet0. In the present work
we explore the properties of the survival probability of ran-
dom walkers who experience a net drift towards an absorp-
tion point, and whose jumping probabilities are periodictime
dependentfunctions, with a periodT. The probability of
stepping to the right at timet is given by

pstd = 1
2 + Fstd, s1d

where Fstd is a periodic function with a period
Tf−1/2,Fstd,1/2g. The mean ofF (over one period) is
given by

kFl ; s1/Tdo
i=1

T

Fsid = − ep, s2d

whereep.0. We shall also consider cases in which the net
drift is caused by a smaller step-size to the right(away from
the absorption boundary) as compared to the step-size to the
left.

In the unbiased case(in which case there is no net drift),
the survival probability is well known to scale as an inverse
power-law:Sstd~ t−1/2. When the walkers are drifted towards
the absorbing point, the survival probability falls exponen-
tially at asymptotically late-timesSstd~ t−3/2exps−t /tsd,
where the characteristic lifetimets depends on the drift ve-
locity (see e.g., Ref.[12]).

The problem of random walks with an absorption bound-
ary has recently been extended to include a situation in
which the jumping probabilities of the walkers aretime-
dependent[13]. The solution presented in[13] accounts for
the binary (alternating) case, namelypstd= 1

2 −ep+s−1dtA.
HereA is the oscillations amplitude, andep.0 represents a
net drift towards the absorbing boundary(the period of such

binary oscillations isT=2). It was found[13] that the char-
acteristic lifetime of the walkersts depends on the amplitude
A, in a nontrivial fashion. In particular,ts was shown to
decrease monotonically with the increment ofA. While this
analysis provides a useful insight into the behavior of such
time-dependent random walks, it is of one’s interest to ex-
plore the general case, of time-dependent jumping probabili-
ties with TÞ2. This is the main goal of the present work.

In addition to the intrinsic interest in such time-dependent
random walks, our work may find direct applications in
many complex physical, biological, and economical systems.
In fact, the main motivation for the introduction of time-
dependent random walks in Ref.[13] was its applicability in
the flourishing field of complex adaptive systems. In the
well-studied model of the minority game(MG) [14], and its
evolutionary version(EMG) [15] (see also[16–28]), it was
found that the winning probabilities of the agents display a
periodic behavior in time. This implies that the survival
probabilities of the agents are well-described by a model of a
periodic time-dependent random walk with an absorbing
boundary[13]. The analytical model presented in Ref.[13]
(with T=2) provides an elegant explanation for the intriguing
phase-transition observed in the EMG[25] (from self-
segregation to clustering, as the prize-to-fine ratio drops be-
low some critical value). However, numerical studies of the
EMG [27] have indicated that the period of the oscillations
(in the winning probabilities of the agents) depends on the
specific parameters of the system. Extending the analysis of
Ref. [13] to the general case of time-dependent jumping
probabilities withTÞ2 is therefore highly motivated.

We consider a time dependent random walker who is
drifted towards an absorption boundary, located at −d (where
d.0). The drift towards the absorption point may be attrib-
uted to two distinct reasons:(i) A smaller(average) probabil-
ity to take a step to the right(away from the absorption
point). That is,kpstdl=1/2−ep, with ep.0, and(ii ) a smaller
step sizer to the right, 0ø r ,1 (where the step size to the
left is scaled to 1). This kind of drift is characterized by the
parameterer ;1/s1+rd− 1

2. Below we explore the time-
dependence of the survival probabilitySstd, for a general
periodic functionpstd.

In the time-independent case, it has been established that
the probabilityBstd for a random walker to be located on the
right-hand side at timet (in cases where there isnoabsorbing
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boundary) is given by Bstd~ t−1/2expf−t /tBg, with tB=ts

(see, e.g., Ref.[12]). Motivated by the equalitytB=ts in the
time independent case, we will find the asymptotic form of
tB in the general case of time-dependent jumping probabili-
ties. We will establish the relationtBsT=2d.tssT=2d ana-
lytically, and demonstrate numerically thattBsTÞ2d.tssT
Þ2d.

We first consider the case in which the periodT of the
oscillations is a natural number. Letvstd be the number of
right steps taken by the walker out oft steps. The walker is
located at the right-hand side[xstd.0] if v.vc, where

vc =
t − d

1 + r
. tS1

2
+ erD , s3d

in the t@d, T limit. Note thatvc is purely a geometric quan-
tity, and thus does not depend onp (accordingly, it does not
depend onT, nor onep).

At any given step, the probability to take a step to the
right, pstd is an independent random variate. Hence,vstd (the
total number of right steps) is the sum oft independent ran-
dom variates. Thus, following the central limit theorem, the
distribution ofvstd approaches a normal distribution whent
is large(the mean and the variance of this distribution is the
sum of means and variances ofp). For t@T the distribution
of v can be very well approximated by a normal distribution
with an average ofmvstd= ts 1

2 −epd, and a variancesv
2

=st /Tdoi=1
T pis1−pid= ts1−4kF2ld /4, where

kF2l ; s1/Tdo
i=1

T

F2sid. s4d

Hence,Bstd can be approximated by this normal distribution,
with the conditionvstd.vcstd:

Bstd =
1

Î2ps2E
vc

`

expF−
sx − md2

2s2 Gdx=
1

Îp
E

Ît/tB

`

e−x2
dx

= 1
2erfcsÎt/tBd, s5d

where

tB =
2s2t

svc − md2 =
1 − 4kF2l
2sep + erd2 , s6d

and erfc is the complementary error function. The comple-
mentary error function can be approximated as erfcsÎt /tBd
.e−t/tB/Îpt /tB at asymptotically large times. One therefore
finds

Bstd ~ t−s1/2de−t/tB, s7d

wheretB is given by Eq.(6).
The model of binary time-dependent jumping probabili-

ties fFstd=−ep+As−1dtg was solvedexactlyin Ref. [13], the
expression forts is given by Eq.(16) of [13]. Expanding this
expression for smallep ander, one finds

tssT = 2d .
1 − 4A2

2sep + erd2 . s8d

This agrees with Eq.(6) in the limit ep,er !1 (or, equiva-
lently, ts@1). One therefore findstssT=2d.tBsT=2d in the
ts@1 limit.

The generalization of the above analysis for an arbitrary
periodT is straightforward. IfT=m/n is a rational number,
thenFstd could be replaced by an equivalent function with a
period m, which is a natural number. IfT is an irrational,
then the all range of values ofFs0, t,Td is sampled(over
many periods of the oscillations). In this case, one should
replace Eqs.(2) and (4) by

kFl =
1

T
E

0

T

Fstddt = − ep s9d

and

kF2l =
1

T
E

0

T

F2stddt. s10d

In order to confirm the analytical predictions[and most
importantly, the relationtssTÞ2d.tBsTÞ2d], we perform
numerical simulations of(discrete) random walks. As we
have proved analytically that our approximation holds true in
the binary case withT=2, we shall compare the survival
probabilitiesSstd in theT=2 andTÞ2 cases. By finding the
relation betweentssTÞ2d andtssT=2d, and showing that it
is similar to the analytic relation betweentBsTÞ2d and
tBsT=2d, we shall establish the resultts=tB in the generic
case(with TÞ2).

We consider numerically two different periodic behaviors
for the jumping probabilities. In the first case,pstd is given
by an harmonic function, while in the second case it is given
by a square function. In the harmonic case,pstd is of the
form

pstd = 1
2 − ep − A cosS2pt

T
D ;T . 1. s11d

(We emphasize thatt is a discretevariable.) In this case one
finds [29] kFl=−ep, and

kF2l =H ep
2 + A2; T = 2

ep
2 + sA/Î2d2; T Þ 2.

s12d

This implies that forTÞ2, tB is independentof the periodT
of the oscillations. Moreover, we find thattBsTÞ2,A/Î2d
=tBsT=2,Ad.

Figure 1 depictstsS=10−5d, the step number in which the
survival probability has fallen toS=10−5, as a function of the
oscillation periodT (and for three different values of the
oscillation amplitudeA). As predicted by Eq.(12), the sur-
vival probabilities are almost independent of the periodT,
except in the unique case of binary oscillations withT=2.
Moreover,Sst ;T=2d,Sst ;TÞ2d, in agreement with Eqs.(6)
and(12). In addition, the numerical simulations indicate that
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the survival probability decreases monotonically with an in-
crement in the oscillation amplitudeA, in agreement with the
analytical prediction Eq.(6).

In Fig. 2 we confirm the relationSst ,TÞ2,Ad=Sst ,T
=2,Î2Ad in the harmonic case. By doing so we confirm that
tssTÞ2,A/Î2d=tssT=2,Ad, and thus thattssTÞ2d.tBsT
Þ2d. The figure displays the step numbertsS=10−6d for
which the survival probabilities have fallen to 10−6. It is clear

that tsS=10−6d for T=2 agrees with the corresponding value
in the TÞ2 case, provided one uses the transformationA
→Î2A.

We further check the validity of the analytical results for
cases in which the jumping probabilities are given by a
square wave of amplitudeA and a mean valuekFl=−ep,
namely pstd= 1

2 −ep+Axstd, where xstd= +1 for 2nT, t
ø s2n+1dT, andxstd=−1 otherwise, wheren is some integer.
In this case one findskF2l=ep

2+A2 for any value ofT. This
implies thattBsTd should beindependentof the periodT of
the oscillations. Figure 3 depictstsS=10−6d, the step number
for which the survival probability has fallen toS=10−6, as a
function of the periodT. We display results for three differ-
ent values of the oscillation amplitudeA. The numerical re-
sults confirm the finding according to whichSst ;Td is inde-
pendent of the value ofT, confirming the relationts.tB.
Furthermore, the survival probabilitySst ;Td decreases with
increasing amplitudeA, in agreement with Eq.(6).

In summary, in this paper we have studied the survival
probabilities of biased(drifted) random walkers, whose
jumping probabilities aretime-dependent. This is an exten-
sion of the binary case(with T=2), studied in Ref.[13]. The
long-time asymptotic survival probability is dominated by an
exponential fallSstd~expf−t /tsg. We have found a simple
approximation forts [see Eq.(6)], which solely depends on
the first and the second moments of the oscillations(kFl and
kF2l), and on the step-size drift parameterer.

Our analytical results imply that the characteristic lifetime
of the walkersts decreaseswith increasingkF2l. The larger
are the temporal-oscillations in the jumping probabilities
pstd, the smaller is the survival probability. This result gen-
eralizes the one derived in Ref.[13] for the binary case(with
T=2).

FIG. 1. The step number for which the survival probability has
fallen to S=10−5, as a function of the oscillation periodT, and for
three different values ofA. The jumping probabilitiespstd are char-
acterized by harmonic oscillations, and are given by Eq.(11). We
useN=108 walkers,ep=0.1, r =1, andd=2. All quantities are di-
mensionless.Sstd is found to be independent of the oscillation pe-
riod T, except in the unique case of binary oscillations withT=2 [in
which caseSstd is smaller, in agreement with the analytical predic-
tion.] In addition,Sstd decreases monotonically with the increment
of the oscillations amplitudeA.

FIG. 2. The step number for whichS=10−6, as a function of the
oscillations amplitudeA, and for two different values of the period
T. The jumping probabilitiespstd are characterized by harmonic
oscillations, and are given by Eq.(11). The results confirm the
analytical prediction according to whichSst ,T=2,Ad=Sst ,T
Þ2,Î2Ad. The parameters used are the same as in Fig. 1.

FIG. 3. The step number for which the survival probability has
fallen to S=10−6, as a function of the oscillation periodT, and for
three different values ofA. The jumping probability is given by a
square wave of the formpstd= 1

2 −ep+Axstd, where xstd= +1 for
2nT, tø s2n+1dT, andxstd=−1 otherwise, wheren is an integer.
We useN=109 walkers,ep=0.1, r =0.9, andd=2. We find that in
this case,Sstd is independent of the oscillation periodT, in agree-
ment with the analytical results.
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The qualitative nature of the anticorrelation between the
survival probabilitySstd and the oscillation amplitudekF2l
(in the biased case) is rather simple. It is a direct conse-
quence of the positive correlation betweensvstd (the disper-
sion in the number of right-steps taken out of a total oft
steps) and Sstd. In the presence of a net drift towards the
absorption boundary,mv (the average value ofv) is smaller
than vc. A large svstd is therefore required in order to sur-
vive, that is, in order to havev.vc at asymptotically late
times [30].

Finally, the present analysis provides a direct explanation
for the underlying mechanism responsible for the intriguing
phase-transition observed in the evolutionary minority game
[25,15]. In this model, the winning probabilities of the agents
pstd where shown to display temporal oscillations[27]. The
amplitude and period of these oscillations depend on the

various parameters of the model(such as the price-to-fine
ratio). In [13] a toy-model of time-dependent jumping prob-
abilities with a period ofT=2 was used to reveal the physics
behind the dynamical phase-transition. In the present work,
we have shown that the anticorrelation between the charac-
teristic lifetime ts and the oscillations amplitudekF2l is a
generic feature,independentof the periodT of the oscilla-
tions. Thus, our analysis(for generic values ofT) lends sup-
port for the general applicability of the conclusions presented
in [13].

The research of S.H. was supported by the G.I.F. Founda-
tion. The research of E.N. was supported by the Horowitz
Foundation, and through the generosity of the Dan David
Prize Scholarship 2003. We would also like to thank
Yonatan Oren.

[1] M. N. Barber and B. W. Ninham,Random and Restricted
Walks(Gordon and Breach, New York, 1970).

[2] N. G. van Kampen,Stochastic Processes in Physics and
Chemistry(North-Holland, Amsterdam, 1992).

[3] R. Fernandez, J. Frohlich, and A. D. Sokal,Random Walks,
Critical Phenomena, and Triviality in Quantum Field Theory
(Springer Verlag, Berlin, 1992).

[4] G. H. Weiss,Aspects and Applications of the Random Walk
(North-Holland, Amsterdam, 1994).

[5] D. Ben-Avraham and S. Havlin,Diffusion and Reactions in
Fractals and Disordered Systems(Cambridge University
Press, Cambridge, 2000).

[6] R. Dickman and D. Ben-Avraham, Phys. Rev. E64,
020102(R) (2001).

[7] J. Marro and R. Dickman,Nonequilibrium Phase Transitions
in Lattice Models(Cambridge University Press, Cambridge,
1999).

[8] H. Hinrichsen, Adv. Phys.49, 815 (2000).
[9] K. De’Bell and T. Lookman, Rev. Mod. Phys.65, 87 (1993).

[10] Z. Farkasa and T. Fulop, J. Phys. A34, 3191(2001).
[11] P. Grassberger, H. Chate, and G. Rousseau, Phys. Rev. E55,

2488 (1997).
[12] M. Bauer, C. Godreche, and J. M. Luck, J. Stat. Phys.96, 963

(1999).
[13] S. Hod, Phys. Rev. Lett.90, 128701(2003).
[14] D. Challet and C. Zhang, Physica A246, 407 (1997); 256,

514 (1998); 269, 30 (1999).
[15] N. F. Johnson, P. M. Hui, R. Jonson, and T. S. Lo, Phys. Rev.

Lett. 82, 3360(1999).
[16] R. D‘Hulst and G. J. Rodgers, Physica A270, 514 (1999).

[17] E. Burgos and H Ceva, Physica A284, 489 (2000).
[18] T. S. Lo, P. M. Hui, and N. F. Johnson, Phys. Rev. E62, 4393

(2000).
[19] P. M. Hui, T. S. Lo, and N. F. Johnson, e-print cond-mat/

0003309.
[20] M. Hart, P. Jefferies, N. F. Johnson, and P. M. Hui, e-print

cond-mat/0003486; e-print cond-mat/0004063.
[21] E. Burgos, H. Ceva, and R. P. J. Perazzo, e-print cond-mat/

0007010.
[22] T. S. Lo, S. W. Lim, P. M. Hui, and N. F. Johnson, Physica A

287, 313 (2000).
[23] Y. Li, A. VanDeemen and R. Savit, e-print nlin.AO/0002004.
[24] R. Savit, R. Manuca, and R. Riolo, Phys. Rev. Lett.82, 2203

(1999).
[25] S. Hod and E. Nakar, Phys. Rev. Lett.88, 238702(2002).
[26] A. C. C. Coolen, e-print cond-mat/0205262.
[27] E. Nakar and S. Hod, Phys. Rev. E67, 016109(2003).
[28] I. Caridi and H. Ceva, e-print cond-mat/0206515.
[29] We use the relationok=0

T−1 coss2pk/Td=0, which implieskFl=
−ep, and the relations cos2s0d+cos2spd=2 (for the binary case
with T=2) andok=0

T−1 cos2s2pk/Td=T/2 (for TÞ2), which di-
rectly yield the values ofkF2l given by Eq.(12). For an irra-
tional periodT, we use the relatione0

T cos2s2pt /Tddt=T/2 to
derive the value ofkF2l given by Eq.(12).

[30] We note that in the unbiased case(with no drift), one finds
mv.vc. A small svstd therefore implies large survival prob-
ability. Thus,kF2l is positively correlated withSstd in the un-
biased case, in agreement with the results of[13] for the binary
case.

E. NAKAR AND S. HOD PHYSICAL REVIEW E70, 016116(2004)

016116-4


